Logically-consistent hypothesis testing and the hexagon of oppositions


Although logical consistency is desirable in scientific research, standard statistical hypothesis tests are typically logically inconsistent. In order to address this issue, previous work introduced agnostic hypothesis tests and proved that they can be logically consistent while retaining statistical optimality properties. This paper characterizes the credal modalities in agnostic hypothesis tests and uses the hexagon of oppositions to explain the logical relations between these modalities. Geometric solids that are composed of hexagons of oppositions illustrate the conditions for these modalities to be logically consistent. Prisms composed of hexagons of oppositions show how the credal modalities obtained from two agnostic tests vary according to their threshold values. Nested hexagons of oppositions summarize logical relations between the credal modalities in these tests and prove new relations.

In Logic Journal of the IGPL
Rafael B. Stern
Rafael B. Stern
Professor of Statistics

I am an Assistant Professor at the Federal University of São Carlos. I have a B.A. in Statistics from University of São Paulo, a B.A. in Law from Pontifícia Universidade Católica in São Paulo, and a Ph.D. in Statistics from Carnegie Mellon University. I am currently a member of the Scientific Council of the Brazilian Association of Jurimetrics, an associate investigator at NeuroMat and a member of the Order of Attorneys of Brazil.